enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Liquid water path - Wikipedia

    en.wikipedia.org/wiki/Liquid_water_path

    The radiative absorption of clouds is also dependent on the liquid water path. An increase of liquid water path leads to an increase in absorption. Again, the largest increase is seen with lower levels of liquid water path. [4] These connections are due to the proportionality between the liquid water path and the optical depth of the cloud. [5]

  3. Liquid water content - Wikipedia

    en.wikipedia.org/wiki/Liquid_water_content

    The droplet concentration of a cloud is the number of water droplets in a volume of cloud, typically a cubic centimeter (Wallace, 2006). The formula for the droplet concentration is as follows. = / In this equation, N is the total number of water droplets in the volume, and V is the total volume of the cloud being measured.

  4. Electromagnetic absorption by water - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_absorption...

    In the near-infrared range liquid water has absorption bands around 1950 nm (5128 cm −1), 1450 nm (6896 cm −1), 1200 nm (8333 cm −1) and 970 nm, (10300 cm −1). [ 19 ] [ 20 ] [ 15 ] The regions between these bands can be used in near-infrared spectroscopy to measure the spectra of aqueous solutions, with the advantage that glass is ...

  5. Molar absorption coefficient - Wikipedia

    en.wikipedia.org/wiki/Molar_absorption_coefficient

    The absorbance of a material that has only one absorbing species also depends on the pathlength and the concentration of the species, according to the Beer–Lambert law =, where ε is the molar absorption coefficient of that material; c is the molar concentration of those species; ℓ is the path length.

  6. Optical depth - Wikipedia

    en.wikipedia.org/wiki/Optical_depth

    ρ 0 is the density of air at sea level; H is the scale height of the atmosphere; z is the height in question; The optical depth of a plane parallel cloud layer is given by [3] = [] / where: Q e is the extinction efficiency; L is the liquid water path

  7. Beer–Lambert law - Wikipedia

    en.wikipedia.org/wiki/Beer–Lambert_law

    Absorbance within range of 0.2 to 0.5 is ideal to maintain linearity in the Beer–Lambert law. If the radiation is especially intense, nonlinear optical processes can also cause variances. The main reason, however, is that the concentration dependence is in general non-linear and Beer's law is valid only under certain conditions as shown by ...

  8. Langmuir adsorption model - Wikipedia

    en.wikipedia.org/wiki/Langmuir_adsorption_model

    The concentration of sites is given by dividing the total number of sites (S 0) covering the whole surface by the area of the adsorbent (a): [ S 0 ] = S 0 / a . {\displaystyle [S_{0}]=S_{0}/a.} We can then calculate the concentration of all sites by summing the concentration of free sites [ S ] and occupied sites:

  9. Absorbance - Wikipedia

    en.wikipedia.org/wiki/Absorbance

    Nevertheless, the absorbance unit or AU is commonly used in ultraviolet–visible spectroscopy and its high-performance liquid chromatography applications, often in derived units such as the milli-absorbance unit (mAU) or milli-absorbance unit-minutes (mAU×min), a unit of absorbance integrated over time.