enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  3. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] where (in SI units): u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure ...

  4. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    V is velocity (in ft/s for US customary units, in m/s for SI units) k is a conversion factor for the unit system (k = 1.318 for US customary units, k = 0.849 for SI units) C is a roughness coefficient; R is the hydraulic radius (in ft for US customary units, in m for SI units) S is the slope of the energy line (head loss per length of pipe or h ...

  5. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    statvolt (CGS unit) statV. ≘ c ⋅ (1 μJ/A⋅m) = 299.792458V. volt (SI unit) V. The difference in electric potential across two points along a conducting wire carrying one ampere of constant current when the power dissipated between the points equals one watt. [ 32 ] = 1 V = 1 W/A = 1 kg⋅m2/ (A⋅s3) = 1 J/C.

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    e. In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids — liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion).

  7. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    Darcy's law. Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell. The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.

  8. Darcy's law for multiphase flow - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law_for_multiphase...

    The pressure gradient and the gravity term are identical for the flux and the rate equations, and will, therefore, be discussed only once. The task here is to have a gravity term that is consistent with the applied units ("H-units") for the pressure gradient. We must, therefore, place our conversion factor together with the gravity parameters.

  9. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    Moody chart. In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor fD, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.