enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    Contents. Moody chart. In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor fD, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Darcy friction factor formulae. In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Which friction factor is plotted in a Moody diagram may be determined by inspection if the publisher did not include the formula described above: Observe the value of the friction factor for laminar flow at a Reynolds number of 1000. If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram.

  5. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    Various explicit approximations of the related Darcy friction factor have been developed for turbulent flow. Stuart W. Churchill [5] developed a formula that covers the friction factor for both laminar and turbulent flow. This was originally produced to describe the Moody chart, which plots the Darcy-Weisbach Friction factor against Reynolds ...

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Moody diagram, which describes the Darcy–Weisbach friction factor f as a function of the Reynolds number and relative pipe roughness. Pressure drops [ 28 ] seen for fully developed flow of fluids through pipes can be predicted using the Moody diagram which plots the Darcy–Weisbach friction factor f against Reynolds number Re and ...

  7. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.

  8. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    In fluid dynamics, Fanno flow (after Italian engineer Gino Girolamo Fanno) is the adiabatic flow through a constant area duct where the effect of friction is considered. [1] Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains ...

  9. Lewis Ferry Moody - Wikipedia

    en.wikipedia.org/wiki/Lewis_Ferry_Moody

    Lewis Ferry Moody. Lewis Ferry Moody (5 January 1880 – 18 April 1953 [1]) was an American engineer and professor, best known for the Moody chart, a diagram capturing relationships between several variables used in calculating fluid flow through a pipe. He has 23 patents for his inventions. [2] He was the first Professor of Hydraulics in the ...