Search results
Results from the WOW.Com Content Network
In mathematics, a sequence of positive real numbers (,,...) is called superincreasing if every element of the sequence is greater than the sum of all previous elements in the sequence. [1] [2] Formally, this condition can be written as + > = for all n ≥ 1.
In computer science, the longest increasing subsequence problem aims to find a subsequence of a given sequence in which the subsequence's elements are sorted in an ascending order and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous or unique.
In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. [1] [2] Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers. As an example, starting with the number 8991 in base 10:
[2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...
4 times the odd numbers = (+) in increasing order, 8 times the odd numbers = (+), etc. = (+) finally, the powers of two = in decreasing order. This ordering is a total order: every positive integer appears exactly once somewhere on this list. However, it is not a well-order. In a well-order, every subset would have an earliest element, but in ...
The addition x + a on the number line. All numbers greater than x and less than x + a fall within that open interval. In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a ...
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...