Search results
Results from the WOW.Com Content Network
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Even if the plant is linear, a nonlinear controller can often have attractive features such as simpler implementation, faster speed, more accuracy, or reduced control energy, which justify the more difficult design procedure. An example of a nonlinear control system is a thermostat-controlled heating system. A building heating system such as a ...
Also, the output of a linear system can contain harmonics (and have a smaller fundamental frequency than the input) even when the input is a sinusoid. For example, consider a system described by () = (+ ()) (). It is linear because it satisfies the superposition principle.
It is an approach for the control of non-linear systems that uses a family of linear controllers, each of which provides satisfactory control for a different operating point of the system. One or more observable variables, called the scheduling variables , are used to determine the current operating region of the system and to enable the ...
A complex system is a system composed of many components which may interact with each other. [1] Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations (like cities), an ecosystem, a living cell, and, ultimately, for ...
Contrary to phenomenological modelling, nonlinear modelling can be utilized in processes and systems where the theory is deficient or there is a lack of fundamental understanding on the root causes of most crucial factors on system. Phenomenological modelling describes a system in terms of laws of nature.
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...