enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pivotal quantity - Wikipedia

    en.wikipedia.org/wiki/Pivotal_quantity

    Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.

  3. Ancillary statistic - Wikipedia

    en.wikipedia.org/wiki/Ancillary_statistic

    A ancillary statistic is a specific case of a pivotal quantity that is computed only from the data and not from the parameters. They can be used to construct prediction intervals . They are also used in connection with Basu's theorem to prove independence between statistics.

  4. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  5. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  6. Optimal experimental design - Wikipedia

    en.wikipedia.org/wiki/Optimal_experimental_design

    Unfortunately practice generally precedes theory, and it is the usual fate of mankind to get things done in some boggling way first, and find out afterward how they could have been done much more easily and perfectly. [34] Kirstine Smith proposed optimal designs for polynomial models in 1918.

  7. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    When power calculations have to be performed, and a small pilot sample is available. Most power and sample size calculations are heavily dependent on the standard deviation of the statistic of interest. If the estimate used is incorrect, the required sample size will also be wrong.

  8. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    where the quantity inside the brackets is called the likelihood ratio. Here, the sup {\displaystyle \sup } notation refers to the supremum . As all likelihoods are positive, and as the constrained maximum cannot exceed the unconstrained maximum, the likelihood ratio is bounded between zero and one.

  9. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    It is standard practice for statisticians to conduct tests in order to determine whether or not a "speculative hypothesis" concerning the observed phenomena of the world (or its inhabitants) can be supported. The results of such testing determine whether a particular set of results agrees reasonably (or does not agree) with the speculated ...