enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Because the energy per unit mass of liquid in a well-mixed reservoir is uniform throughout, Bernoulli's equation can be used to analyze the fluid flow everywhere in that reservoir (including pipes or flow fields that the reservoir feeds) except where viscous forces dominate and erode the energy per unit mass. [6]: Example 3.5 and p.116

  3. Compressible flow - Wikipedia

    en.wikipedia.org/wiki/Compressible_flow

    Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]

  4. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    Since this occurs dynamically as air flows over the aerospace object, it is convenient to alter the compressibility factor Z, defined for an initial 30 gram moles of air, rather than track the varying mean molecular weight, millisecond by millisecond. This pressure dependent transition occurs for atmospheric oxygen in the 2,500–4,000 K ...

  5. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...

  6. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  7. Aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Aerodynamics

    When the density is allowed to vary, the flow is called compressible. In air, compressibility effects are usually ignored when the Mach number in the flow does not exceed 0.3 (about 335 feet (102 m) per second or 228 miles (366 km) per hour at 60 °F (16 °C)). Above Mach 0.3, the problem flow should be described using compressible aerodynamics.

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The ratio of length to radius of a pipe should be greater than 1/48 of the Reynolds number for the Hagen–Poiseuille law to be valid. [9] If the pipe is too short, the Hagen–Poiseuille equation may result in unphysically high flow rates; the flow is bounded by Bernoulli's principle, under less restrictive conditions, by

  9. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The assumptions for the stream function equation are: The flow is incompressible and Newtonian. Coordinates are orthogonal. Flow is 2D: u 3 = ⁠ ∂u 1 / ∂x 3 ⁠ = ⁠ ∂u 2 / ∂x 3 ⁠ = 0; The first two scale factors of the coordinate system are independent of the last coordinate: ⁠ ∂h 1 / ∂x 3 ⁠ = ⁠ ∂h 2 / ∂x 3 ⁠ = 0 ...