Ad
related to: composition of function examplesuslegalforms.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, the composition operator takes two functions, and , and returns a new function ():= () = (()).Thus, the function g is applied after applying f to x.. Reverse composition, sometimes denoted , applies the operation in the opposite order, applying first and second.
In computer science, function composition is an act or mechanism to combine simple functions to build more complicated ones. Like the usual composition of functions in mathematics, the result of each function is passed as the argument of the next, and the result of the last one is the result of the whole.
Bijective composition: the first function need not be surjective and the second function need not be injective. A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection
Composite function: is formed by the composition of two functions f and g, by mapping x to f (g(x)). Inverse function: is declared by "doing the reverse" of a given function (e.g. arcsine is the inverse of sine). Implicit function: defined implicitly by a relation between the argument(s) and the value.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
The domain of a composition operator can be taken more narrowly, as some Banach space, often consisting of holomorphic functions: for example, some Hardy space or Bergman space. In this case, the composition operator lies in the realm of some functional calculus , such as the holomorphic functional calculus .
For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system. Although the title of this article specifies analytic functions, there are results for more general functions of a complex variable as well.
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
Ad
related to: composition of function examplesuslegalforms.com has been visited by 100K+ users in the past month