Search results
Results from the WOW.Com Content Network
Nanomedicine is the medical application of nanotechnology. [1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines.
Bionanotechnology is the use of biomolecules for applications in nanotechnology, including the use of viruses and lipid assemblies. [ 45 ] [ 46 ] Nanocellulose , a nanopolymer often used for bulk-scale applications, has gained interest owing to its useful properties such as abundance, high aspect ratio, good mechanical properties , renewability ...
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential ...
Nanotechnology's ability to observe and control the material world at a nanoscopic level can offer great potential for construction development. Nanotechnology can help improve the strength and durability of construction materials, including cement, steel, wood, and glass. [9] By applying nanotechnology, materials can gain a range of new ...
First PDF version of the Opensource Handbook of Nanoscience and Nanotechnology. Contains only the sections that are more than 25% finished. Please acknowledge the Opensource Handbook of Nanoscience and Nanotechnology if you use this material. The images also appears on the Commons/nanotechnology page
Such nanorobots intended for use in medicine should be non-replicating, as replication would needlessly increase device complexity, reduce reliability, and interfere with the medical mission. Nanotechnology provides a wide range of new technologies for developing customized means to optimize the delivery of pharmaceutical drugs.
Drug delivery is a rapidly growing area that is now taking advantage of nanotube technology. Systems being used currently for drug delivery include dendrimers, polymers, and liposomes, but carbon nanotubes present the opportunity to work with effective structures that have high drug loading capacities and good cell penetration qualities.
The success of DNA nanotechnology in constructing artificially designed nanostructures out of nucleic acids such as DNA, combined with the demonstration of systems for DNA computing, has led to speculation that artificial nucleic acid nanodevices can be used to target drug delivery based upon directly sensing its environment. These methods make ...