Search results
Results from the WOW.Com Content Network
The Boltzmann constant, and therefore entropy, have dimensions of energy divided by temperature, which has a unit of joules per kelvin (J⋅K −1) in the International System of Units (or kg⋅m 2 ⋅s −2 ⋅K −1 in terms of base units). The entropy of a substance is usually given as an intensive property — either entropy per unit mass ...
When measuring entropy using the natural logarithm (ln), the unit of information entropy is called a "nat", but when it is measured using the base-2 logarithm, the unit of information entropy is called a "shannon" (alternatively, "bit"). This is just a difference in units, much like the difference between inches and centimeters.
The entropy unit is a non-S.I. unit of thermodynamic entropy, usually denoted by "e.u." or "eU" and equal to one calorie per kelvin per mole, or 4.184 joules per kelvin per mole. [1] Entropy units are primarily used in chemistry to describe enthalpy changes.
Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.
Boltzmann constant, entropy equivalent of one nat of information. 10 1: 5.74 J⋅K −1: Standard entropy of 1 mole of graphite [2] 10 33: ≈ 10 35 J⋅K −1:
Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect internal disorder. [9] Likewise, the value of the entropy of a distribution of atoms and molecules in a thermodynamic system is a measure of the disorder in the arrangements ...
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
Boltzmann's entropy describes the system when all the accessible microstates are equally likely. It is the configuration corresponding to the maximum of entropy at equilibrium. The randomness or disorder is maximal, and so is the lack of distinction (or information) of each microstate.