enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Code-excited linear prediction - Wikipedia

    en.wikipedia.org/wiki/Code-excited_linear_prediction

    Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).

  3. Linear encoder - Wikipedia

    en.wikipedia.org/wiki/Linear_encoder

    A linear encoder is a sensor, transducer or readhead paired with a scale that encodes position. The sensor reads the scale in order to convert the encoded position into an analog or digital signal , which can then be decoded into position by a digital readout (DRO) or motion controller.

  4. Linear predictive coding - Wikipedia

    en.wikipedia.org/wiki/Linear_predictive_coding

    Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive model. [1] [2] LPC is the most widely used method in speech coding and speech synthesis.

  5. Algebraic code-excited linear prediction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_code-excited...

    Algebraic code-excited linear prediction (ACELP) is a speech coding algorithm in which a limited set of pulses is distributed as excitation to a linear prediction filter. It is a linear predictive coding (LPC) algorithm that is based on the code-excited linear prediction (CELP) method and has an algebraic structure.

  6. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  7. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    The encoder-decoder architecture, often used in natural language processing and neural networks, can be scientifically applied in the field of SEO (Search Engine Optimization) in various ways: Text Processing: By using an autoencoder, it's possible to compress the text of web pages into a more compact vector representation. This can help reduce ...

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.

  9. MLT-3 encoding - Wikipedia

    en.wikipedia.org/wiki/MLT-3_Encoding

    It moves to the next state to transmit a 1 bit, and stays in the same state to transmit a 0 bit. Similar to simple NRZ encoding, MLT-3 has a coding efficiency of 1 bit/baud, however it requires four transitions to complete a full cycle (from low-to-middle, middle-to-high, high-to-middle, middle-to-low). Thus, the maximum fundamental frequency ...

  1. Related searches linear encoder examples in python language pdf full free download with product key

    linear encoderlinear optical encoder
    linear encoder tools