Search results
Results from the WOW.Com Content Network
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
This is a list of volume formulas of basic shapes: [4]: 405–406 Cone – , where is the base's radius; Cube – , where is the side's length;; Cuboid – , where , , and are the sides' length;
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
Some SI units of volume to scale and approximate corresponding mass of water. To ease calculations, a unit of volume is equal to the volume occupied by a unit cube (with a side length of one). Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3).
The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.
Several problems in the Moscow Mathematical Papyrus (problem 14) and in the Rhind Mathematical Papyrus (numbers 44, 45, 46) compute the volume of a rectangular granary. [10] [11] Problem 14 of the Moscow Mathematical Papyrus computes the volume of a truncated pyramid, also known as a frustum.
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation: