Search results
Results from the WOW.Com Content Network
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
The reaction of a substituted amide with phosphorus oxychloride gives a substituted chloroiminium ion (2), also called the Vilsmeier reagent. The initial product is an iminium ion (4b), which is hydrolyzed to the corresponding ketone or aldehyde during workup. [7] The Vilsmeier–Haack reaction
The Leuckart reaction is the chemical reaction that converts aldehydes or ketones to amines. The reaction is an example of reductive amination. [1] The reaction, named after Rudolf Leuckart, uses either ammonium formate or formamide as the nitrogen donor and reducing agent. It requires high temperatures, usually between 120 and 130 °C; for the ...
Passerini reaction: Carboxylic acid, ketone or aldehyde Ugi reaction: Isocyanide, carboxylic acid, ketone, primary amine Bodroux reaction [22] [23] Carboxylic acid, Grignard reagent with an aniline derivative ArNHR' Chapman rearrangement [24] [25] Aryl imino ether: For N,N-diaryl amides. The reaction mechanism is based on a nucleophilic ...
A classic named reaction is the Mignonac reaction (1921) [13] involving reaction of a ketone with ammonia over a nickel catalyst. An example of this reaction is the synthesis of 1-phenylethylamine from acetophenone: [14] Reductive amination acetophenone ammonia. Additionally, many systems catalyze reductive aminations with hydrogenation ...
This has been theorized [1] to be caused by the restriction of undesired (E)-isomer by preventing the ketone from accessing non-reactive tautomers. Generally, a Mannich reaction is the combination of an amine, a ketone with a β-acidic proton and aldehyde to create a condensed product in a β-addition to the ketone.
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]
In monometallic complexes, aldehydes and ketones can bind to metals in either of two modes, η 1-O-bonded and η 2-C,O-bonded. These bonding modes are sometimes referred to sigma- and pi-bonded. These forms may sometimes interconvert. The sigma bonding mode is more common for higher valence, Lewis-acidic metal centers (e.g., Zn 2+). [1]