Search results
Results from the WOW.Com Content Network
The Bode plot for a linear, time-invariant system with transfer function (being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function | H ( s = j ω ) | {\displaystyle |H(s=j\omega )|} of frequency ω {\displaystyle \omega } (with j {\displaystyle j ...
In signal processing, the coherence is a statistic that can be used to examine the relation between two signals or data sets. It is commonly used to estimate the power transfer between input and output of a linear system. If the signals are ergodic, and the system function is linear, it can be used to estimate the causality between the input ...
For transfer functions (e.g., Bode plot, chirp) the complete frequency response may be graphed in two parts: power versus frequency and phase versus frequency—the phase spectral density, phase spectrum, or spectral phase. Less commonly, the two parts may be the real and imaginary parts of the transfer function.
The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.
The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
Some programs (such as MATLAB toolboxes) that design filters with real-valued coefficients prefer the Nyquist frequency (/) as the frequency reference, which changes the numeric range that represents frequencies of interest from [,] cycle/sample to [,] half-cycle/sample. Therefore, the normalized frequency unit is important when converting ...