Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali
However, since blood is buffered with carbonate at physiological pH (near 7.4), free-base amines will be rapidly converted back into their acid form. In fact, 94.19% of cocaine will exist as the acid form under equilibrium at pH=7.4, calculated using the Henderson–Hasselbalch equation assuming a pKa of 8.61. [1]
The ratio of acid, AH and conjugate base, A −, concentrations varies as the difference between the pH and the pK a varies, in accordance with the Henderson-Hasselbalch equation. The pH of a solution of a monoprotic weak acid can be expressed in terms of the extent of dissociation. After rearranging the expression defining the acid ...
The ratio of concentration of conjugate acid/base to concentration of the acidic/basic indicator determines the pH (or pOH) of the solution and connects the color to the pH (or pOH) value. For pH indicators that are weak electrolytes, the Henderson–Hasselbalch equation can be written as: pH = pK a + log 10 [Ind −] / [HInd]
The isohydric principle is the phenomenon whereby multiple acid/base pairs in solution will be in equilibrium with one another, tied together by their common reagent: the hydrogen ion and hence, the pH of solution. That is, when several buffers are present together in the same solution, they are all exposed to the same hydrogen ion activity.
Finally, using the Henderson-Hasselbalch equation, and knowing the drug's (pH at which there is an equilibrium between its ionized and non-ionized molecules), it is possible to calculate the non-ionized concentration of the drug and therefore the concentration that will be subject to absorption:
As calculated by the Henderson–Hasselbalch equation, in order to maintain a normal pH of 7.4 in the blood (whereby the pK a of carbonic acid is 6.1 at physiological temperature), a 20:1 ratio of bicarbonate to carbonic acid must constantly be maintained; this homeostasis is mainly mediated by pH sensors in the medulla oblongata of the brain ...
Karl Albert Hasselbalch (Danish pronunciation: [ˈkʰɑˀl ˈælˀpɐt ˈhæsl̩ˌpælˀk]; 1 November 1874 – 19 September 1962) was a Danish physician and chemist known for his work on the Henderson–Hasselbalch equation.