Search results
Results from the WOW.Com Content Network
Gene therapy is a medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells. [ 1 ] [ 2 ] [ 3 ]
Sleeping Beauty can also be viable in gene therapy procedures by helping introduce beneficial transgenes into host genomes. Belcher et al. tested this notion by using Sleeping Beauty transposons to help insert sequences into mice with sickle cell anemia so they can produce the enzymes need to counteract their anemia. [ 6 ]
This is an accepted version of this page This is the latest accepted revision, reviewed on 13 February 2025. Manipulation of an organism's genome For a non-technical introduction to the topic of genetics, see Introduction to genetics. For the song by Orchestral Manoeuvres in the Dark, see Genetic Engineering (song). For the Montreal hardcore band, see Genetic Control. Part of a series on ...
The gene to be inserted must be combined with other genetic elements in order for it to work properly. The gene can be modified at this stage for better expression or effectiveness. As well as the gene to be inserted most constructs contain a promoter and terminator region as well as a selectable marker gene.
In gene therapy a gene that is intended for delivery is packaged into a replication-deficient viral particle to form a viral vector. [29] Viruses used for gene therapy to date include retrovirus, adenovirus, adeno-associated virus and herpes simplex virus. However, there are drawbacks to using viruses to deliver genes into cells.
The therapy known as Casgevy [9] works through editing a dysfunctional protein that interferes with creation of adult hemoglobin. This gene is known as the BCL11A, and when people have Beta thalassemia, their bodies do not make enough adult hemoglobin. Casgevy uses precise gene editing of stem cells, and reduces the activity of BCL11A.
How vectors work to transfer genetic material. Gene therapy utilizes the delivery of DNA into cells, which can be accomplished by several methods, summarized below. The two major classes of methods are those that use recombinant viruses (sometimes called biological nanoparticles or viral vectors) and those that use naked DNA or DNA complexes (non-viral methods).
Genetically modified bacteria were the first organisms to be modified in the laboratory, due to their simple genetics. [1] These organisms are now used for several purposes, and are particularly important in producing large amounts of pure human proteins for use in medicine.