Search results
Results from the WOW.Com Content Network
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
1.2 × 10 2: tech: electric power output of 1 m 2 solar panel in full sunlight (approx. 12% efficiency), at sea level 1.3 × 10 2: tech: peak power consumption of a Pentium 4 CPU 2 × 10 2: tech: stationary bicycle average power output [17] [18] 2.76 × 10 2: astro: fusion power output of 1 cubic meter of volume of the Sun's core. [19] 2.9 × 10 2
All of the significant digits remain, but the placeholding zeroes are no longer required. Thus 1 230 400 would become 1.2304 × 10 6 if it had five significant digits. If the number were known to six or seven significant figures, it would be shown as 1.230 40 × 10 6 or 1.230 400 × 10 6. Thus, an additional advantage of scientific notation is ...
10 −1: Deci-(d) 1.6×10 −1: Gaussian distribution: probability of a value being more than 1 standard deviation from the mean on a specific side [20] 1.7×10 −1: Chance of rolling a '6' on a six-sided die: 4.2×10 −1: Probability of being dealt only one pair in poker 5.0×10 −1: Chance of getting a 'head' in a coin toss.
Subtract the quantity of the digits 2, 5, and 8 in the number from the quantity of the digits 1, 4, and 7 in the number. The result must be divisible by 3. Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; since 4 − 4 = 0 is a multiple of 3, the number 16,499,205,854,376 is ...
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.
The precise size that can be guaranteed is not known, but the best bounds known on its size involve binary logarithms. In particular, all graphs have a clique or independent set of size at least 1 / 2 log 2 n (1 − o(1)) and almost all graphs do not have a clique or independent set of size larger than 2 log 2 n (1 + o(1)). [32]