Search results
Results from the WOW.Com Content Network
[2] Ruby's standard library includes a BigDecimal class in the module bigdecimal. Java's standard library includes a java.math.BigDecimal class. In Objective-C, the Cocoa and GNUstep APIs provide an NSDecimalNumber class and an NSDecimal C data type for representing decimals whose mantissa is up to 38 digits long, and exponent is from −128 to ...
For example, APA style stipulates a thousands separator for "most figures of 1000 or more" except for page numbers, binary digits, temperatures, etc. There are always "common-sense" country-specific exceptions to digit grouping, such as year numbers, postal codes, and ID numbers of predefined nongrouped format, which style guides usually point out.
2.3434E−6 = 2.3434 × 10 −6 = 2.3434 × 0.000001 = 0.0000023434. The advantage of this scheme is that by using the exponent we can get a much wider range of numbers, even if the number of digits in the significand, or the "numeric precision", is much smaller than the range. Similar binary floating-point formats can be defined for computers.
100: Centesimal: As 100=10 2, these are two decimal digits. 121: Number expressible with two undecimal digits. 125: Number expressible with three quinary digits. 128: Using as 128=2 7. [clarification needed] 144: Number expressible with two duodecimal digits. 169: Number expressible with two tridecimal digits. 185
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The 80-bit floating-point format has a range (including subnormals) from approximately 3.65 × 10 −4951 to 1.18 × 10 +4932. Although log 10 ( 2 64) ≈ 19.266, this format is usually described as giving approximately eighteen significant digits of precision (the floor of log 10 ( 2 63), the minimum guaranteed precision).
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.