Search results
Results from the WOW.Com Content Network
Field testing of turbines is used to validate the manufacturer's efficiency guarantee. Detailed calculation of the efficiency of a hydropower turbine accounts for the head lost due to flow friction in the power canal or penstock, rise in tailwater level due to flow, the location of the station and effect of varying gravity, the air temperature ...
A wheel power divided by the initial jet power, is the turbine efficiency, η = 4u(V i − u)/V i 2. It is zero for u = 0 and for u = V i. As the equations indicate, when a real Pelton wheel is working close to maximum efficiency, the fluid flows off the wheel with very little residual velocity. [11]
Kaplan turbine and electrical generator cut-away view. The runner of the small water turbine. A water turbine is a rotary machine that converts kinetic energy and potential energy of water into mechanical work. Water turbines were developed in the 19th century and were widely used for industrial power prior to electrical grids. Now, they are ...
The hot exhaust gas from an MHD generator can heat the boilers of a steam power plant, increasing overall efficiency. Practical MHD generators have been developed for fossil fuels, but these were overtaken by less expensive combined cycles in which the exhaust of a gas turbine or molten carbonate fuel cell heats steam to power a steam turbine.
Turgo turbine and generator At Milford Sound, New Zealand. The Turgo turbine is an impulse water turbine designed for medium head applications. Operational Turgo turbines achieve efficiencies of about 87%. In factory and lab tests Turgo turbines perform with efficiencies of up to 90%. It works with net heads between 15 and 300 m. [1]
After electric generators were developed in the late 1800s, turbines were a natural source of generator power where potential hydropower sources existed. In 1826 the French engineer Benoit Fourneyron developed a high-efficiency (80%) outward-flow water turbine. Water was directed tangentially through the turbine runner, causing it to spin.
A pico hydro system made by the Sustainable Vision project from Baylor University [1]. Pico hydro is a term used for hydroelectric power generation of under 5 kW. These generators have proven to be useful in small, remote communities that require only a small amount of electricity – for example, to power one or two fluorescent light bulbs and a TV or radio in 50 or so homes. [2]
Given a flow and head for a specific hydro site, and the RPM requirement of the generator, calculate the specific speed. The result is the main criteria for turbine selection or the starting point for analytical design of a new turbine. Once the desired specific speed is known, basic dimensions of the turbine parts can be easily calculated.