Search results
Results from the WOW.Com Content Network
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical ...
Using two points, a simple estimate is the midhinge (the 25% trimmed mid-range), but a more efficient estimate is the 29% trimmed mid-range, that is, averaging the two values 29% of the way in from the smallest and the largest values: the 29th and 71st percentiles; this has an efficiency of about 81%. [3]
A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, [1] while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics. Descriptive statistics is distinguished from inferential statistics (or ...
Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal N(0,σ 2) Population. In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread.
The five-number summary is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles: the sample minimum (smallest observation) the lower quartile or first quartile; the median (the middle value) the upper quartile or third quartile; the sample maximum (largest observation)
In statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. [1] They are basic summary statistics, used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot.
In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".
There is a paucity of reliable guidance on estimating sample sizes before starting the research, with a range of suggestions given. [ 16 ] [ 19 ] [ 20 ] [ 21 ] In an effort to introduce some structure to the sample size determination process in qualitative research, a tool analogous to quantitative power calculations has been proposed.