enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof without words - Wikipedia

    en.wikipedia.org/wiki/Proof_without_words

    Proof without words of the Nicomachus theorem (Gulley (2010)) that the sum of the first n cubes is the square of the n th triangular number. In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text.

  3. Mathematical beauty - Wikipedia

    en.wikipedia.org/wiki/Mathematical_beauty

    Examples of the use of mathematics in the visual arts include applications of chaos theory and fractal geometry to computer-generated art, symmetry studies of Leonardo da Vinci, projective geometries in development of the perspective theory of Renaissance art, grids in Op art, optical geometry in the camera obscura of Giambattista della Porta ...

  4. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.

  5. Mathematics and art - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_art

    Art has sometimes stimulated the development of mathematics, as when Brunelleschi's theory of perspective in architecture and painting started a cycle of research that led to the work of Brook Taylor and Johann Heinrich Lambert on the mathematical foundations of perspective drawing, [183] and ultimately to the mathematics of projective geometry ...

  6. List of mathematical artists - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_artists

    Fine art: Use of group theory, self-replicating shapes in art [21] [22] Escher, M. C. 1898–1972: Fine art: Exploration of tessellations, hyperbolic geometry, assisted by the geometer H. S. M. Coxeter [19] [23] Farmanfarmaian, Monir: 1922–2019: Fine art: Geometric constructions exploring the infinite, especially mirror mosaics [24] Ferguson ...

  7. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it to conics. A short elementary computational proof in the case of the real projective plane was found by Stefanovic (2010).

  8. Penrose triangle - Wikipedia

    en.wikipedia.org/wiki/Penrose_triangle

    There also exist three-dimensional solid shapes each of which, when viewed from a certain angle, appears the same as the 2-dimensional depiction of the Penrose triangle on this page (such as – for example – the adjacent image depicting a sculpture in Perth, Australia). The term "Penrose Triangle" can refer to the 2-dimensional depiction or ...

  9. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]