Search results
Results from the WOW.Com Content Network
Two German chemists also preceded Schlotterbeck in discovery of the reaction, Hans von Pechmann in 1895 and Viktor Meyer in 1905. [4] [5] The reaction has since been extended to the synthesis of β-keto esters from the condensation between aldehydes and diazo esters. [6] The general reaction scheme is as follows: General Scheme for Buchner Reaction
These possibilities have been used to account for the fact that, for certain substrates like α-tetralone, the group that migrates can sometimes change, depending on the conditions used, to deliver either of the two possible amides. [8] Two proposed reaction mechanisms for the amide formation from a ketone via Schmidt reaction
In monometallic complexes, aldehydes and ketones can bind to metals in either of two modes, η 1-O-bonded and η 2-C,O-bonded. These bonding modes are sometimes referred to sigma- and pi-bonded. These forms may sometimes interconvert. The sigma bonding mode is more common for higher valence, Lewis-acidic metal centers (e.g., Zn 2+). [1]
Kowalski ester homologation, an alternative to the Arndt-Eistert synthesis. Has been used to convert β-amino esters from α-amino esters through an ynolate intermediate. [2] Seyferth–Gilbert homologation in which an aldehyde is converted to a terminal alkyne and then hydrolyzed back to an aldehyde. Some reactions increase the chain length by ...
The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. [1] The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899. [1] Baeyer-Villiger oxidation
This has been theorized [1] to be caused by the restriction of undesired (E)-isomer by preventing the ketone from accessing non-reactive tautomers. Generally, a Mannich reaction is the combination of an amine, a ketone with a β-acidic proton and aldehyde to create a condensed product in a β-addition to the ketone.
The two major resonance forms of an amide. Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond ...
The reaction was discovered by Teruaki Mukaiyama in 1973. [2] His choice of reactants allows for a crossed aldol reaction between an aldehyde and a ketone (>C=O), or a different aldehyde without self-condensation of the aldehyde. For this reason the reaction is used extensively in organic synthesis.