Search results
Results from the WOW.Com Content Network
(Note: that as given by P.K.Nag, an alternative name for 'useful energy' is 'availability' or exergy, and an alternative name for 'non-useful energy' is 'unavailability', or anergy (Nag 1984, p. 156)). But as E.Sciubba and S.Ulgiati observed, the notion of transformity meant to capture the emergy invested per unit product, or useful output.
Download as PDF; Printable version; In other projects Wikimedia Commons; Wikiversity; ... Chemical engineering thermodynamics (11 P) Cooling technology (13 C, 158 P)
Thermodynamics and statistical mechanics. {}: CS1 maint: multiple names: authors list Translated by J. Kestin (1956) New York: Academic Press. Ehrenfest, Paul and Tatiana (1912). The conceptual foundations of the statistical approach in mechanics .
The behavior of a thermodynamic system is summarized in the laws of Thermodynamics, which concisely are: . Zeroth law of thermodynamics; If A, B, C are thermodynamic systems such that A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.
Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy.Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles.
The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. [1] A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.