Search results
Results from the WOW.Com Content Network
Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae [1] and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars , gas and dust , and a central concentration of stars known as the bulge .
The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot , and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from ...
For disk galaxies, virtually all star formation occurs in the disk. In that case, the elongated rings are likewise confined to the disk, and collectively they evolve to appear as (possibly disconnected) segments of spiral arms: See (e.g) NGC 4414, as well as figures in. [2] In 1995, the spiral galaxy NGC 4414 was imaged by the Hubble Space ...
These groups divide into blue star-forming galaxies that are more like spiral types, and red non-star forming galaxies that are more like elliptical galaxies. Spiral galaxies are quite thin, dense, and rotate relatively fast, while the stars in elliptical galaxies have randomly oriented orbits.
On the right of the Hubble sequence diagram are two parallel branches encompassing the spiral galaxies. A spiral galaxy consists of a flattened disk, with stars forming a (usually two-armed) spiral structure, and a central concentration of stars known as the bulge. Roughly half of all spirals are also observed to have a bar-like structure, with ...
Elliptical galaxies are spherical or elliptical in appearance. Spiral galaxies range from S0, the lenticular galaxies, to Sb, which have a bar across the nucleus, to Sc galaxies which have strong spiral arms. In total count, ellipticals amount to 13%, S0 to 22%, Sa, b, c galaxies to 61%, irregulars to 3.5%, and peculiars to 0.9%.
The Milky Way started out small and grew in size as it merged with other galaxies, gaining stars as well as hydrogen to form more stars. Each galaxy has hydrogen gas that aids in the birth of stars.
The Tully–Fisher relation for spiral and lenticular galaxies. In astronomy, the Tully–Fisher relation (TFR) is a widely verified empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. Since the observed brightness of a galaxy is distance-dependent, the ...