Search results
Results from the WOW.Com Content Network
As with anatomical structures, sequence homology between protein or DNA sequences is defined in terms of shared ancestry. Two segments of DNA can have shared ancestry because of either a speciation event or a duplication event . Homology among proteins or DNA is typically inferred from their sequence similarity.
Homology among DNA, RNA, or proteins is typically inferred from their nucleotide or amino acid sequence similarity. Significant similarity is strong evidence that two sequences are related by evolutionary changes from a common ancestral sequence. Alignments of multiple sequences are used to indicate which regions of each sequence are homologous.
A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.
The comparative study of the anatomy of groups of animals shows structural features that are fundamentally similar (homologous), demonstrating phylogenetic and ancestral relationships with other organisms, most especially when compared with fossils of ancient extinct organisms.
Homeotic genes are genes which regulate the development of anatomical structures in various organisms such as echinoderms, [1] insects, mammals, and plants. Homeotic genes often encode transcription factor proteins, and these proteins affect development by regulating downstream gene networks involved in body patterning.
A protein–protein binding interface may consist of a large surface with constraints on the hydrophobicity or polarity of the amino-acid residues. Functionally constrained regions of proteins evolve more slowly than unconstrained regions such as surface loops, giving rise to blocks of conserved sequence when the sequences of a protein family ...
Homology model of the DHRS7B protein created with Swiss-model and rendered with PyMOL. Homology modeling, also known as comparative modeling of protein, refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental three-dimensional structure of a related homologous protein (the "template").
The EMC consists of up to 10 subunits (EMC1 - EMC4, MMGT1, EMC6 - EMC10), of which only two (EMC8/9) are homologous proteins. [3] [2] Seven out of ten (EMC1, EMC3, EMC4, MMMGT1, EMC6, EMC7, EMC10) subunits are predicted to contain at least one transmembrane domain (TMD), whereas EMC2, EMC8 and EMC9 do not contain any predicted transmembrane domains are herefore likely to interact with the rest ...