Search results
Results from the WOW.Com Content Network
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single point charge at rest, the two laws are equivalent, expressing the same physical law in different ways. [6] The law has been tested extensively, and observations have upheld the law on the scale from 10 −16 m to 10 8 m. [6]
The magnetic pole model: two opposing poles, North (+) and South (−), separated by a distance d produce a H-field (lines). Historically, early physics textbooks would model the force and torques between two magnets as due to magnetic poles repelling or attracting each other in the same manner as the Coulomb force between electric charges. At ...
The magnetic flux distribution of a linear Halbach array may seem somewhat counter-intuitive to those familiar with simple magnets or solenoids. The reason for this flux distribution can be visualised using Mallinson's original diagram (note that it uses the negative y component, unlike the diagram in Mallinson's article). [4]
Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: opposite charges attract, like charges repel. [7] Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as ...
A large diversity of mechanical means are used to separate magnetic materials. [2] During magnetic separation, magnets are situated inside two separator drums which bear liquids. Due to the magnets, magnetic particles are being drifted by the movement of the drums. This can create a magnetic concentrate (e.g. an ore concentrate). [2]
In the case of the magnetic “Coulomb” barrier, the patent describes alternating/unequal or asymmetric North and South magnetic poles but the patent method language is broad enough to include positive and negative electrostatic poles as well. The implication is that regularly spaced opposite and unequal electrostatic point charges possess ...