enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    'Generate numbers' is run when all integers have been output. For a w -bit word length, the Mersenne Twister generates integers in the range [ 0 , 2 w − 1 ] {\displaystyle [0,2^{w}-1]} . The Mersenne Twister algorithm is based on a matrix linear recurrence over a finite binary field F 2 {\displaystyle {\textbf {F}}_{2}} .

  3. Cryptographically secure pseudorandom number generator

    en.wikipedia.org/wiki/Cryptographically_secure...

    In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...

  4. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  5. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Blum-Blum-Shub is a PRNG algorithm that is considered cryptographically secure. Its base is based on prime numbers. Park-Miller generator: 1988 S. K. Park and K. W. Miller [13] A specific implementation of a Lehmer generator, widely used because it is included in C++ as the function minstd_rand0 from C++11 onwards. [14] ACORN generator: 1989 ...

  6. Combined linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Combined_Linear_Congruenti...

    The CLCG provides an efficient way to calculate pseudo-random numbers. The LCG algorithm is computationally inexpensive to use. [3] The results of multiple LCG algorithms are combined through the CLCG algorithm to create pseudo-random numbers with a longer period than is achievable with the LCG method by itself. [3]

  7. Permuted congruential generator - Wikipedia

    en.wikipedia.org/.../Permuted_Congruential_Generator

    A permuted congruential generator (PCG) is a pseudorandom number generation algorithm developed in 2014 by Dr. M.E. O'Neill which applies an output permutation function to improve the statistical properties of a modulo-2 n linear congruential generator.

  8. Xorshift - Wikipedia

    en.wikipedia.org/wiki/Xorshift

    An xorshift* generator applies an invertible multiplication (modulo the word size) as a non-linear transformation to the output of an xorshift generator, as suggested by Marsaglia. [1] All xorshift* generators emit a sequence of values that is equidistributed in the maximum possible dimension (except that they will never output zero for 16 ...

  9. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.