Search results
Results from the WOW.Com Content Network
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
If X is a binomial (n, p) random variable and if n is large and np is small then X approximately has a Poisson(np) distribution. If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT:
The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this
Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is sufficiently small. According to rules of thumb, this approximation is good if n ≥ 20 and p ≤ 0.05 [ 36 ] such that np ≤ 1 , or if n > 50 and p < 0.1 such that np < 5 , [ 37 ...
An R package poibin was provided along with the paper, [13] which is available for the computing of the cdf, pmf, quantile function, and random number generation of the Poisson binomial distribution. For computing the PMF, a DFT algorithm or a recursive algorithm can be specified to compute the exact PMF, and approximation methods using the ...
The binomial distributions have ε = 1 − p so that 0 < ε < 1. The Poisson distributions have ε = 1. The negative binomial distributions have ε = p −1 so that ε > 1. Note the analogy to the classification of conic sections by eccentricity: circles ε = 0, ellipses 0 < ε < 1, parabolas ε = 1, hyperbolas ε > 1.
In mathematics, a super-Poissonian distribution is a probability distribution that has a larger variance than a Poisson distribution with the same mean. [1] Conversely, a sub-Poissonian distribution has a smaller variance. An example of super-Poissonian distribution is negative binomial distribution. [2]
In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...