enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lehmer code - Wikipedia

    en.wikipedia.org/wiki/Lehmer_code

    The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth.

  3. Permutation codes - Wikipedia

    en.wikipedia.org/wiki/Permutation_Codes

    A main problem in permutation codes is to determine the value of (,), where (,) is defined to be the maximum number of codewords in a permutation code of length and minimum distance . There has been little progress made for 4 ≤ d ≤ n − 1 {\displaystyle 4\leq d\leq n-1} , except for small lengths.

  4. Cycles and fixed points - Wikipedia

    en.wikipedia.org/wiki/Cycles_and_fixed_points

    (3.a) We may choose one of the f(k − 1, j − 1) permutations with k − 1 elements and j − 1 fixed points and add element k as a new fixed point. (3.b) We may choose one of the f(k − 1, j) permutations with k − 1 elements and j fixed points and insert element k in an existing cycle of length > 1 in front of one of the (k − 1) − j ...

  5. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    This means in 3d it is sufficient to take cyclic or anticyclic permutations of (1, 2, 3) and easily obtain all the even or odd permutations. Analogous to 2-dimensional matrices, the values of the 3-dimensional Levi-Civita symbol can be arranged into a 3 × 3 × 3 array:

  6. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    As for the equal probability of the permutations, it suffices to observe that the modified algorithm involves (n−1)! distinct possible sequences of random numbers produced, each of which clearly produces a different permutation, and each of which occurs—assuming the random number source is unbiased—with equal probability.

  8. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...

  9. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    From a permutations perspective, let the event A be the probability of finding a group of 23 people without any repeated birthdays. Where the event B is the probability of finding a group of 23 people with at least two people sharing same birthday, P(B) = 1 − P(A).