enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  4. Sunflower (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Sunflower_(mathematics)

    In other words, a set system or collection of sets is a sunflower if all sets in share the same common subset of elements. An element in U {\displaystyle U} is either found in the common subset S {\displaystyle S} or else appears in at most one of the W {\displaystyle W} elements.

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  6. Bijective proof - Wikipedia

    en.wikipedia.org/wiki/Bijective_proof

    In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain ...

  7. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  8. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then show that for any counterexample there is a still smaller counterexample, producing a contradiction. This mode of argument is the contrapositive of proof by complete induction. It is known light-heartedly as the "minimal criminal" method [citation needed] and is similar in its nature to Fermat's method of "infinite descent".

  9. Actual infinity - Wikipedia

    en.wikipedia.org/wiki/Actual_infinity

    Infinite sets are so common, that when one considers finite sets, this is generally explicitly stated; for example finite geometry, finite field, etc. Fermat's Last Theorem is a theorem that was stated in terms of elementary arithmetic , which has been proved only more than 350 years later.