Search results
Results from the WOW.Com Content Network
Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a sulfur atom; this anion is hydrolyzed at a dramatically slower rate ...
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
Polymerization, an anabolic pathway used to build macromolecules such as nucleic acids, proteins, and polysaccharides, uses condensation reactions to join monomers. [4] Macromolecules are created from smaller molecules using enzymes and cofactors. Use of ATP to drive the endergonic process of anabolism.
The production of ATP is achieved through the oxidation of glucose molecules. In oxidation, the electrons are stripped from a glucose molecule to reduce NAD+ and FAD. NAD+ and FAD possess a high energy potential to drive the production of ATP in the electron transport chain. ATP production occurs in the mitochondria of the cell.
A transport protein (variously referred to as a transmembrane pump, transporter, escort protein, acid transport protein, cation transport protein, or anion transport protein) is a protein that serves the function of moving other materials within an organism. Transport proteins are vital to the growth and life of all living things.
Chemical structure of a polypeptide macromolecule. A macromolecule is a very large molecule important to biological processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers.
In active transport a solute is moved against a concentration or electrochemical gradient; in doing so the transport proteins involved consume metabolic energy, usually ATP. In primary active transport the hydrolysis of the energy provider (e.g. ATP) takes place directly in order to transport the solute in question, for instance, when the ...
Macromolecules, such as RNA and proteins, are actively transported across the nuclear membrane in a process called the Ran-GTP nuclear transport cycle. G-proteins are GTPase enzymes that bind to a molecule called guanosine triphosphate (GTP) which they then hydrolyze to create guanosine diphosphate (GDP) and release energy.