Search results
Results from the WOW.Com Content Network
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press. ISBN 9780195089868. Bruton, Sheila; Ong, Faye (2000). Science content standards for California public schools : kindergarten through grade twelve (PDF). Sacramento, Calif.: Dept. of Education. ISBN 978-0-8011-1496-0
Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 22 ] F = m d v d t ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In Newtonian mechanics, for one-dimensional simple harmonic motion, the equation of motion, which is a second-order linear ordinary differential equation with constant coefficients, can be obtained by means of Newton's second law and Hooke's law for a mass on a spring.
Assuming Newton's second law in the form F = ma, fictitious forces are always proportional to the mass m. The fictitious force that has been called an inertial force [7] [8] [9] is also referred to as a d'Alembert force, [10] [11] or sometimes as a pseudo force. [12] D'Alembert's principle is just another way of formulating Newton's second law ...
Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference , but in any inertial frame of reference , it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change.
The configuration space and the phase space of the dynamical system both are Euclidean spaces, i. e. they are equipped with a Euclidean structure.The Euclidean structure of them is defined so that the kinetic energy of the single multidimensional particle with the unit mass = is equal to the sum of kinetic energies of the three-dimensional particles with the masses , …,:
So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.