Search results
Results from the WOW.Com Content Network
A mid-squares hash code is produced by squaring the input and extracting an appropriate number of middle digits or bits. For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit ...
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...
HAIFA structure, [17] extendable-output functions (XOFs) design [18] BLAKE3: arbitrary Merkle tree: ECOH: 224 to 512 bits hash FSB: 160 to 512 bits hash GOST: 256 bits hash Grøstl: up to 512 bits hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction ...
BLAKE is a cryptographic hash function based on Daniel J. Bernstein's ChaCha stream cipher, but a permuted copy of the input block, XORed with round constants, is added before each ChaCha round. Like SHA-2, there are two variants differing in the word size. ChaCha operates on a 4×4 array of words.
The sponge construction for hash functions. P i are blocks of the input string, Z i are hashed output blocks.. In cryptography, a sponge function or sponge construction is any of a class of algorithms with finite internal state that take an input bit stream of any length and produce an output bit stream of any desired length.
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
Function Hash(message, digestSize) Inputs: message: Bytes (0..2 32-1) Message to be hashed digestSize: Integer (1..2 32) Desired number of bytes to be returned Output: digest: Bytes (digestSize) The resulting generated bytes, digestSize bytes long Hash is a variable-length hash function, built using Blake2b, capable of generating digests up to ...