enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  3. Module:Convert/documentation/conversion data - Wikipedia

    en.wikipedia.org/wiki/Module:Convert/...

    There are two codes used with fuel efficiency units: volume/length and length/volume. In addition, certain codes are required to indicate that the conversion procedure for the unit is built-in to the module. Any other text is used as an offset in the conversion calculation that occurs with temperature units.

  4. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJ⋅K −1 ⋅m −3, which is the same as the theoretical value of ⁠ 3 / 2 ⁠ RT per kelvin per mole of gas molecules (where R is the gas constant and T is temperature). As noted, the much lower values for gas heat ...

  5. Standard temperature and pressure - Wikipedia

    en.wikipedia.org/wiki/Standard_temperature_and...

    The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa

  6. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...

  7. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    6.01 kJ/mol Entropy change of fusion at 273.15 K, 1 bar, Δ fus S: 22.0 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o: 44.0 kJ/mol Enthalpy change of vaporization at 373.15 K, Δ vap H: 40.68 kJ/mol Std entropy change of vaporization, Δ vap S o: 118.89 J/(mol·K) Entropy change of vaporization at 373.15 K, Δ vap S: 109.02 J/(mol ...

  8. Hartree - Wikipedia

    en.wikipedia.org/wiki/Hartree

    The hartree (symbol: E h), also known as the Hartree energy, is the unit of energy in the atomic units system, named after the British physicist Douglas Hartree. Its CODATA recommended value is E h = 4.359 744 722 2060 (48) × 10 −18 J ‍ [ 1 ] = 27.211 386 245 981 (30) eV .

  9. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  1. Related searches hartree to kj/mol calculator for water volume gas at meter 50 amp

    hartree to kj/mol calculator for water volume gas at meter 50 amp banks