enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    If A, B are integral domains over an algebraically closed field k, then A ⊗ k B is an integral domain. This is a consequence of Hilbert's nullstellensatz , [ a ] and, in algebraic geometry, it implies the statement that the coordinate ring of the product of two affine algebraic varieties over an algebraically closed field is again an integral ...

  3. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The most important integral domains are principal ideal domains, PIDs for short, and fields. A principal ideal domain is an integral domain in which every ideal is principal. An important class of integral domains that contain a PID is a unique factorization domain (UFD), an integral domain in which every nonunit element is a product of prime ...

  4. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.

  5. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    A module over a ring is an abelian group that the ring acts on as a ring of endomorphisms, very much akin to the way fields (integral domains in which every non-zero element is invertible) act on vector spaces.

  6. Integral element - Wikipedia

    en.wikipedia.org/wiki/Integral_element

    In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A. [1]If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial).

  7. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.

  8. Integrally closed domain - Wikipedia

    en.wikipedia.org/wiki/Integrally_closed_domain

    rngs ⊃ rings ⊃ commutative ringsintegral domains ⊃ integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domainsfields ⊃ algebraically closed fields. An explicit example is the ring of integers Z, a Euclidean domain. All regular local rings are integrally closed as ...

  9. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals. An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two.