enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    For example, the field of all real numbers is an integral domain. Conversely, every Artinian integral domain is a field. In particular, all finite integral domains are finite fields (more generally, by Wedderburn's little theorem , finite domains are finite fields ).

  3. Integrally closed domain - Wikipedia

    en.wikipedia.org/wiki/Integrally_closed_domain

    This integral closure is an integrally closed domain. Integrally closed domains also play a role in the hypothesis of the Going-down theorem. The theorem states that if A⊆B is an integral extension of domains and A is an integrally closed domain, then the going-down property holds for the extension A⊆B.

  4. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.

  5. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    In principal ideal domains a near converse holds: every nonzero prime ideal is maximal. All principal ideal domains are integrally closed. The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain. Let A be an integral domain, the following are equivalent. A is a PID.

  6. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.

  7. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    When the integrand is a constant function c, the integral is equal to the product of c and the measure of the domain of integration. If c = 1 and the domain is a subregion of R 2, the integral gives the area of the region, while if the domain is a subregion of R 3, the integral gives the volume of the region. Example. Let f(x, y) = 2 and

  8. Integrally closed - Wikipedia

    en.wikipedia.org/wiki/Integrally_closed

    An integral domain is said to be integrally closed if it is equal to its integral closure in its field of fractions. An ordered group G is called integrally closed if for all elements a and b of G, if a n ≤ b for all natural numbers n then a ≤ 1.

  9. Integral element - Wikipedia

    en.wikipedia.org/wiki/Integral_element

    A nicer statement is this: the integral closure of a noetherian domain is a Krull domain (Mori–Nagata theorem). Nagata also gave an example of dimension 1 noetherian local domain such that the integral closure is not finite over that domain. [citation needed] Let A be a noetherian integrally closed domain with field of fractions K.