Ads
related to: discrete mathematics vertex worksheet answerswyzant.com has been visited by 10K+ users in the past month
- Flexible Hours
Have a 15 Minute or 2 Hour Session.
Only Pay for the Time You Need.
- Find a Tutor
Find Affordable Tutors at Wyzant.
1-on-1 Sessions From $25/hr.
- Our Powerful Online Tool
Interactive Features & Video Chat
Make Learning Easy. Try It Free.
- Personalized Sessions
Name Your Subject, Find Your Tutor.
Customized 1-On-1 Instruction.
- Flexible Hours
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
A vertex can reach a vertex (and is reachable from ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with and ends with . In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph.
The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...
For instance, in the octahedron graph, shown in the figure, each vertex has a neighbourhood isomorphic to a cycle of four vertices, so the octahedron is locally C 4. For example: Any complete graph K n is locally K n-1. The only graphs that are locally complete are disjoint unions of complete graphs. A Turán graph T(rs,r) is locally T((r-1)s,r ...
There are two main variations of monadic second-order graph logic: MSO 1 in which only vertex and vertex set variables are allowed, and MSO 2 in which all four types of variables are allowed. The predicates on these variables include equality testing, membership testing, and either vertex-edge incidence (if both vertex and edge variables are ...
In an empty graph, each vertex forms a component with one vertex and zero edges. [3] More generally, a component of this type is formed for every isolated vertex in any graph. [4] In a connected graph, there is exactly one component: the whole graph. [4] In a forest, every component is a tree. [5] In a cluster graph, every component is a ...
Ads
related to: discrete mathematics vertex worksheet answerswyzant.com has been visited by 10K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month