Search results
Results from the WOW.Com Content Network
A properly designed ETL system extracts data from source systems and enforces data type and data validity standards and ensures it conforms structurally to the requirements of the output. Some ETL systems can also deliver data in a presentation-ready format so that application developers can build applications and end users can make decisions. [1]
Holistic grading or holistic scoring, in standards-based education, is an approach to scoring essays using a simple grading structure that bases a grade on a paper's overall quality. [1] This type of grading, which is also described as nonreductionist grading, [ 2 ] contrasts with analytic grading, [ 3 ] which takes more factors into account ...
Extract, load, transform (ELT) is an alternative to extract, transform, load (ETL) used with data lake implementations. In contrast to ETL, in ELT models the data is not transformed on entry to the data lake, but stored in its original raw format.
Spatial extract, transform, load (spatial ETL), also known as geospatial transformation and load (GTL), is a process for managing and manipulating geospatial data, for example map data. It is a type of extract, transform, load (ETL) process, with software tools and libraries specialised for geographical information.
An anchor paper is a sample essay response to an assignment or test question requiring an essay, primarily in an educational effort.Unlike more traditional educational assessments such as multiple choice, essays cannot be graded with an answer key, as no strictly correct or incorrect solution exists.
Automated essay scoring (AES) is the use of specialized computer programs to assign grades to essays written in an educational setting. It is a form of educational assessment and an application of natural language processing. Its objective is to classify a large set of textual entities into a small number of discrete categories, corresponding ...
Data quality refers to the state of qualitative or quantitative pieces of information. There are many definitions of data quality, but data is generally considered high quality if it is "fit for [its] intended uses in operations, decision making and planning".
While the analysis of educational data is not itself a new practice, recent advances in educational technology, including the increase in computing power and the ability to log fine-grained data about students' use of a computer-based learning environment, have led to an increased interest in developing techniques for analyzing the large amounts of data generated in educational settings.