Search results
Results from the WOW.Com Content Network
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae. Published by the Chudnovsky brothers in 1988, [ 1 ] it was used to calculate π to a billion decimal places.
This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.
In theoretical computer science, the π-calculus (or pi-calculus) is a process calculus. The π -calculus allows channel names to be communicated along the channels themselves, and in this way it is able to describe concurrent computations whose network configuration may change during the computation.
In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems.Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes.
Using the P function mentioned above, the simplest known formula for π is for s = 1, but m > 1. Many now-discovered formulae are known for b as an exponent of 2 or 3 and m as an exponent of 2 or it some other factor-rich value, but where several of the terms of sequence A are zero.
Borwein's algorithm was devised by Jonathan and Peter Borwein to calculate the value of /. This and other algorithms can be found in the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity .
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
A spigot algorithm is an algorithm for computing the value of a transcendental number (such as π or e) that generates the digits of the number sequentially from left to right providing increasing precision as the algorithm proceeds. Spigot algorithms also aim to minimize the amount of intermediate storage required.