Search results
Results from the WOW.Com Content Network
Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...
In the separation of variables, these functions are given by solutions to = Hence, the spectral theorem ensures that the separation of variables will (when it is possible) find all the solutions. For many differential operators, such as d 2 d x 2 {\displaystyle {\frac {d^{2}}{dx^{2}}}} , we can show that they are self-adjoint by integration by ...
The early identification of self-similar solutions of the second kind can be found in problems of imploding shock waves (Guderley–Landau–Stanyukovich problem), analyzed by G. Guderley (1942) and Lev Landau and K. P. Stanyukovich (1944), [3] and propagation of shock waves by a short impulse, analysed by Carl Friedrich von Weizsäcker [4] and ...
The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .
Separable differential equation, in which separation of variables is achieved by various means; Separable extension, in field theory, an algebraic field extension; Separable filter, a product of two or more simple filters in image processing; Separable ordinary differential equation, a class of equations that can be separated into a pair of ...
Some authors allow any real , [1] [2] whereas others require that not be 0 or 1. [ 3 ] [ 4 ] The equation was first discussed in a work of 1695 by Jacob Bernoulli , after whom it is named. The earliest solution, however, was offered by Gottfried Leibniz , who published his result in the same year and whose method is the one still used today.
In July 2023, a second and independent preprint of Neville appeared on arXiv, [6] claiming the solution of the problem for separable Hilbert spaces. In September 2024, a peer-reviewed article published in Axioms by a team of four Jordanian academic researchers announced that they had solved the invariant subspace problem. [ 7 ]
The first successful step in the generalization of this concept to functions of several variables was due to Leonida Tonelli, [1] who introduced a class of continuous BV functions in 1926 (Cesari 1986, pp. 47–48), to extend his direct method for finding solutions to problems in the calculus of variations in more than one variable.