Search results
Results from the WOW.Com Content Network
One of the main functions of the chloroplast is its role in photosynthesis, the process by which light is transformed into chemical energy, to subsequently produce food in the form of sugars. Water (H 2 O) and carbon dioxide (CO 2) are used in photosynthesis, and sugar and oxygen (O 2) are made, using light energy.
The reaction center will drive photosynthesis by taking light and turning it into chemical energy [3] that can then be used by the chloroplast. [2] Two families of reaction centers in photosystems can be distinguished: type I reaction centers (such as photosystem I in chloroplasts and in green-sulfur bacteria) and type II reaction centers (such ...
The leaf is the primary site of photosynthesis in plants. There are four main factors influencing photosynthesis and several corollary factors. The four main are: [113] Light irradiance and wavelength; Water absorption; Carbon dioxide concentration; Temperature. Total photosynthesis is limited by a range of environmental factors.
Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, two plastoquinone, two heme, one bicarbonate, 20 lipids, the Mn 4 CaO 5 cluster (including two chloride ions), one non heme Fe 2+ and two putative Ca 2+ ions per monomer. [4] There are several crystal structures of photosystem II. [5]
A major function of the thylakoid membrane and its integral photosystems is the establishment of chemiosmotic potential. The carriers in the electron transport chain use some of the electron's energy to actively transport protons from the stroma to the lumen .
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
Like mitochondria, chloroplasts have a double-membrane envelope, called the chloroplast envelope, but unlike mitochondria, chloroplasts also have internal membrane structures called thylakoids. Furthermore, one or two additional membranes may enclose chloroplasts in organisms that underwent secondary endosymbiosis , such as the euglenids and ...
Photosystem II is present on the thylakoid membranes inside chloroplasts, the site of photosynthesis in green plants. [9] The structure of Photosystem II is remarkably similar to the bacterial reaction center, and it is theorized that they share a common ancestor. The core of Photosystem II consists of two subunits referred to as D1 and D2 ...