enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generating function transformation - Wikipedia

    en.wikipedia.org/wiki/Generating_function...

    The next formulas for powers, logarithms, and compositions of formal power series are expanded by these polynomials with variables in the coefficients of the original generating functions. [ 4 ] [ 5 ] The formula for the exponential of a generating function is given implicitly through the Bell polynomials by the EGF for these polynomials ...

  3. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  4. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.

  5. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

  6. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    This is an analytic function of q in the interior of the unit disk, and can also be considered as a formal power series in q. The special case ϕ ( q ) = ( q ; q ) ∞ = ∏ k = 1 ∞ ( 1 − q k ) {\displaystyle \phi (q)=(q;q)_{\infty }=\prod _{k=1}^{\infty }(1-q^{k})} is known as Euler's function , and is important in combinatorics , number ...

  7. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .

  8. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  9. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    On the other hand, the formal power series ring over a UFD need not be a UFD, even if the UFD is local. For example, if R is the localization of k[x, y, z]/(x 2 + y 3 + z 7) at the prime ideal (x, y, z) then R is a local ring that is a UFD, but the formal power series ring R[[X]] over R is not a UFD.

  1. Related searches formal power series factorials in python interview questions for data science

    formal power series mathsformal power series
    formal power series formula