enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.

  3. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  4. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    EViews: EViews version 8 offers three different methods for robust least squares: M-estimation (Huber, 1973), S-estimation (Rousseeuw and Yohai, 1984), and MM-estimation (Yohai 1987). [ 14 ] Julia : the CovarianceMatrices package offers several methods for heteroskedastic robust variance covariance matrices.

  5. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    If the experimental errors, , are uncorrelated, have a mean of zero and a constant variance, , the Gauss–Markov theorem states that the least-squares estimator, ^, has the minimum variance of all estimators that are linear combinations of the observations. In this sense it is the best, or optimal, estimator of the parameters.

  6. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    A very important application of the variance function is its use in parameter estimation and inference when the response variable is of the required exponential family form as well as in some cases when it is not (which we will discuss in quasi-likelihood). Weighted least squares (WLS) is a special case of generalized least squares. Each term ...

  7. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    The connection of maximum likelihood estimation to OLS arises when this distribution is modeled as a multivariate normal. Specifically, assume that the errors ε have multivariate normal distribution with mean 0 and variance matrix σ 2 I. Then the distribution of y conditionally on X is

  8. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    Ordinary least squares can be interpreted as maximum likelihood estimation with the prior that the errors are independent and normally distributed with zero mean and common variance. In GLS, the prior is generalized to the case where errors may not be independent and may have differing variances .

  9. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .