Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Superoxide is known to denature enzymes, oxidize lipids, and fragment DNA. [21] SODs catalyze the production of O 2 and H 2 O 2 from superoxide (O − 2), which results in less harmful reactants. When acclimating to increased levels of oxidative stress, SOD concentrations typically increase with the degree of stress conditions.
In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.
Exopeptidase enzymes exist in the small intestine. These enzymes have two classes: aminopeptidases are a brush border enzyme and carboxypeptidases which is from the pancreas. Aminopeptidases are enzymes that remove amino acids from the amino terminus of protein. They are present in all lifeforms and are crucial for survival since they do many ...
Altered PREP activity may be associated with autism spectrum disorders and various psychological diseases such as schizophrenia, mania and clinical depression. [10]However, there is conflicting information as to the exact role that prolyl endopeptidase plays in the pathophysiology of depression, with earlier studies documenting a decreased activity of the enzyme in depressed patients, but more ...
The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. [1]
Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase, is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. [1] [2] It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates (or triphosphates depending on the class of RNR).
Different proteins are degraded at different rates. Abnormal proteins are quickly degraded, whereas the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological ...