Search results
Results from the WOW.Com Content Network
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Liénard–Chipart criterion; Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be ...
Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.
In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems .
Harry Nyquist developed the Nyquist stability criterion for feedback systems in the 1930s. Richard Bellman developed dynamic programming in the 1940s. [23] Warren E. Dixon, control theorist and a professor; Kyriakos G. Vamvoudakis, developed synchronous reinforcement learning algorithms to solve optimal control and game theoretic problems
Nyquist criterion may refer to: Nyquist stability criterion, a graphical technique for determining the stability of a feedback control system; Nyquist frequency, ½ of the sampling rate of a discrete signal processing system; Nyquist rate, a rate used in signal processing; Nyquist ISI criterion, a condition to avoid intersymbol interference
His goal was stability, not general control, which simplified the problem significantly. While proportional control provided stability against small disturbances, it was insufficient for dealing with a steady disturbance, notably a stiff gale (due to steady-state error), which required adding the integral term. Finally, the derivative term was ...
These systems can be solved by powerful frequency domain mathematical techniques of great generality, such as the Laplace transform, Fourier transform, Z transform, Bode plot, root locus, and Nyquist stability criterion. Nonlinear control theory covers a wider class of systems that do not obey the superposition principle.