enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  4. Slide rule - Wikipedia

    en.wikipedia.org/wiki/Slide_rule

    For example, setting 7.5 on one scale over 10 on the other scale, the user can see that at the same time 1.5 is over 2, 2.25 is over 3, 3 is over 4, 3.75 is over 6, 4.5 is over 6, and 6 is over 8, among other pairs.

  5. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    For example, one can multiply a sine that is less than 0.5 by some power of two or ten to bring it into the range [0.5,1]. After finding that logarithm in the radical table, one adds the logarithm of the power of two or ten that was used (he gives a short table), to get the required logarithm. [1]: p. 36

  6. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  7. Logarithmic form - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_form

    In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne . [ 1 ] In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold (the ...

  8. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".

  9. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The exponential exp ψ(x) is approximately x − ⁠ 1 / 2 ⁠ for large x, but gets closer to x at small x, approaching 0 at x = 0. For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so