enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved. In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad impossibile.

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  5. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...

  6. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    A proof by contrapositive is a direct proof of the contrapositive of a statement. [14] However, indirect methods such as proof by contradiction can also be used with contraposition, as, for example, in the proof of the irrationality of the square root of 2 .

  7. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    Proof by infinite descent. In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number ...

  8. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    Constructive proof. In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular ...

  9. Contradiction - Wikipedia

    en.wikipedia.org/wiki/Contradiction

    The use of this fact forms the basis of a proof technique called proof by contradiction, which mathematicians use extensively to establish the validity of a wide range of theorems. This applies only in a logic where the law of excluded middle A ∨ ¬ A {\displaystyle A\vee \neg A} is accepted as an axiom.