Search results
Results from the WOW.Com Content Network
The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.
The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = () = (), where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).
nephroid: tangents as chords of a circle, principle nephroid: tangents as chords of a circle. Similar to the generation of a cardioid as envelope of a pencil of lines the following procedure holds: Draw a circle, divide its perimeter into equal spaced parts with points (see diagram) and number them consecutively.
The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides ...
The epitrochoid with R = 3, r = 1 and d = 1/2. In geometry, an epitrochoid (/ ɛ p ɪ ˈ t r ɒ k ɔɪ d / or / ɛ p ɪ ˈ t r oʊ k ɔɪ d /) is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.
If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid . A related concept is a glissette , the curve described by a point attached to a given curve as it slides along two (or more) given curves.
Centred on any point X on circle C, draw an arc through O (the centre of C) which intersects C at points V and Y. Do the same centred on Y through O, intersecting C at X and Z. Note that the line segments OV, OX, OY, OZ, VX, XY, YZ have the same length, all distances being equal to the radius of the circle C.
As X moves closer to C, angle ᗉAXB will decrease and angle ᗉ AXC will increase. When X is close enough to B, ᗉ AXB > ᗉ AXC. When X is close enough to C, ᗉ AXB < ᗉ AXC. This means that at some point, X will be in a position where ᗉ AXB = ᗉ AXC. When X is in this position, it is defined as the foot of the pseudoaltitude from ...