Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The first five layers of Pascal's 3-simplex (Pascal's pyramid). Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle). Arrows show derivation of two example terms. In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .
PascalABC.NET was developed by a group of enthusiasts at the Institute of Mathematics, Mechanics, and Computer Science in Rostov-on-Don, Russia. [1] In 2003, a predecessor of the modern PascalABC.NET, called Pascal ABC, was implemented by associate professor Stanislav Mikhalkovich to be used for teaching schoolchildren instead of Turbo Pascal, which became outdated and incompatible with modern ...
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
The original basis for UCSD Pascal was the p-machine compiler from ETH Zurich, the originators of Pascal. JRT was a Pascal interpreter by Jim Russell Tyson that compiled to its own pseudocode separate from UCSD Pascal p-code. In the early 1980s various organizations developed compilers for UCSD Pascal on microcomputers.