Search results
Results from the WOW.Com Content Network
Since all the inequalities are in the same form (all less-than or all greater-than), we can examine the coefficient signs for each variable. Eliminating x would yield 2*2 = 4 inequalities on the remaining variables, and so would eliminating y. Eliminating z would yield only 3*1 = 3 inequalities so we use that instead.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Grönwall's inequality is an important tool to obtain various estimates in the theory of ordinary and stochastic differential equations. In particular, it provides a comparison theorem that can be used to prove uniqueness of a solution to the initial value problem; see the Picard–Lindelöf theorem. It is named for Thomas Hakon Grönwall (1877 ...
In mathematics, Nesbitt's inequality, ... "Introduction to Inequalities". Online e-book in PDF format. "Who was Alfred Nesbitt, the eponym of Nesbitt inequality".
The set of solutions of a real linear inequality constitutes a half-space of the 'n'-dimensional real space, one of the two defined by the corresponding linear equation. The set of solutions of a system of linear inequalities corresponds to the intersection of the half-spaces defined by individual inequalities.
Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:
The McNuggets version of the coin problem was introduced by Henri Picciotto, who placed it as a puzzle in Games Magazine in 1987, [19] and included it in his algebra textbook co-authored with Anita Wah. [20] Picciotto thought of the application in the 1980s while dining with his son at McDonald's, working out the problem on a napkin.